检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001 [2]黑龙江科技学院电气与信息工程学院,黑龙江哈尔滨150027
出 处:《传感器与微系统》2010年第5期80-82,共3页Transducer and Microsystem Technologies
摘 要:针对瓦斯传感器常见的故障,提出了基于小波包和神经网络的故障诊断方法。通过对瓦斯传感器的输出信号进行三层小波包分解,得到8个不同频段的分解信号,再对其进行特征提取得到一个八维的特征向量,作为故障样本对三层神经网络进行训练,建立故障类型分类器,对瓦斯传感器故障进行诊断。仿真结果表明:该方法可以准确地诊断出故障类型。Aimed at the common gas sensor fault, the approach of fault diagnosis based on wavelet packet and neural network is discussed. The output of gas sensor by three-layer wavelet packet is decomposed to achieve eight signals of different frequency bands. An 8-dimeusional eigenvector of vibrating signals was constructed for training 3-layer neural network. The fault type classifier is established for the gas sensor fault diagnosis. The simulation result shows that the proposed method can detect faults accurately.
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117