周仲瑛诊治系统性红斑狼疮病案的用药特色分析——基于信息熵的关联规则方法  被引量:4

Analysis the Effective Combination Drugs of ZHOU Zhong-Ying' Formulae in Preventing and Treating the Systemic Lupus Erythematosus Based on Entropy Theory and Bidirectional Association Rules

在线阅读下载全文

作  者:李文林[1] 屠强[2] 郭立中[1] 陈涤平[1] 陆建峰[2] 赵国平[3] 刘琴[1] 

机构地区:[1]南京中医药大学,江苏南京210046 [2]南京理工大学计算机系,江苏南京210094 [3]暨南大学医学院,广东广州106322

出  处:《辽宁中医杂志》2010年第5期769-771,共3页Liaoning Journal of Traditional Chinese Medicine

基  金:"十一五"国家科技支撑计划资助项目(2007BAI10B06-6);江苏省教育科学"十一五"规划课题(Ba200801018)

摘  要:目的:对周仲瑛治疗系统性红斑狼疮病案中的用药特色进行分析。方法:基于信息熵及双向关联规则算法。结果:在高频药物之间挖掘出34条规则,潜力熵值大于偶然熵值,主要以解毒、清热、化瘀类功效的药物组合居多。在低频药物之间挖掘出13条规则,其偶然熵值大于潜力熵值,药物组合以培补肝肾、祛风除湿、活血行水等为主。结论:关联规则中引入信息熵,可以对数据挖掘结果进行初步度量,并弥补基于支持度和置信度框架下关联规则挖掘对非频繁项集进行分析的不足。Objective:To analyse the effective combination drugs of ZHOU Zhong-ying' formulae in preventing and treating the Systemic Lupus Erythematosus.Methods:Bidirectional association rules and Information Entropy.Results:34 rules of Traditional Chinese Medicine couples were selected in the high frequency drugs distribution,all the value of contingency entropy were bigger than that of the latent entropy,and the drugs were mainly those for heat clearing,antidote medicines and blood act stasis remove medicines.At the same time,13 rules were selected in the low frequency drugs distribution,all the value of contingency entropy were smaller than that of latent entropy.and the drugs were mainly those for nourishing,eliminating wind and dampness,promoting blood circulation.Conclusion:The interesting rules that have low support but high confidence cannot effectively be found out in the common association rules;but the new method could found out many significant TCM couples in the study of the compatibility of Traditional Chinese Medicine(TCM).It was proved the method was able to solve above problems well.

关 键 词:周仲瑛 系统性红斑狼疮 关联规则 信息熵 用药特色 

分 类 号:R2-03[医药卫生—中医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象