检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao Jin ZHANG Zhao Yong HUANG
机构地区:[1]College of Mathematics & Physics, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China [2]Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2010年第6期1149-1164,共16页数学学报(英文版)
基 金:Partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060284002);National Natural Science Foundation of China (Grant No. 10771095);National Natural Science Foundation of Jiangsu Province of China (Grant No. BK2007517)
摘 要:Let A be an Artinian algebra and F an additive subbifunctor of Ext,(-, -) having enough projectives and injectives. We prove that the dualizing subvarieties of mod A closed under F-extensions have F-almost split sequences. Let T be an F-cotilting module in mod A and S a cotilting module over F = End(T). Then Horn(-, T) induces a duality between F-almost split sequences in ⊥FT and almost sl31it sequences in ⊥S, where addrS = Hom∧(f(F), T). Let A be an F-Gorenstein algebra, T a strong F-cotilting module and 0→A→B→C→0 and F-almost split sequence in ⊥FT.If the injective dimension of S as a Г-module is equal to d, then C≌(ΩCM^-dΩ^dDTrA^*)^*,where(-)^*=Hom(g,T).In addition, if the F-injective dimension of A is equal to d, then A≌ΩMF^-dDΩFop^-d TrC≌ΩCMF^-d ≌F^d DTrC.Let A be an Artinian algebra and F an additive subbifunctor of Ext,(-, -) having enough projectives and injectives. We prove that the dualizing subvarieties of mod A closed under F-extensions have F-almost split sequences. Let T be an F-cotilting module in mod A and S a cotilting module over F = End(T). Then Horn(-, T) induces a duality between F-almost split sequences in ⊥FT and almost sl31it sequences in ⊥S, where addrS = Hom∧(f(F), T). Let A be an F-Gorenstein algebra, T a strong F-cotilting module and 0→A→B→C→0 and F-almost split sequence in ⊥FT.If the injective dimension of S as a Г-module is equal to d, then C≌(ΩCM^-dΩ^dDTrA^*)^*,where(-)^*=Hom(g,T).In addition, if the F-injective dimension of A is equal to d, then A≌ΩMF^-dDΩFop^-d TrC≌ΩCMF^-d ≌F^d DTrC.
关 键 词:F-almost split sequences almost split sequences F-Gorenstein algebras
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42