检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白小晶[1] 张洁玉[1] 孙权森[1] 夏德深[1] 孙怀江[1]
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094
出 处:《模式识别与人工智能》2010年第2期222-227,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.60773172);江苏省自然科学基金(No.BK2006704-2)资助项目
摘 要:提出一种配准与分割耦合模型.配准项采用基于抽象匹配流的非参数配准模型,解决基于B样条的参数化配准方法与非参数活动轮廓模型在定义形式和求解方法上不一致的问题.分割项采用基于边缘的活动轮廓模型实现对感兴趣区域的分割,对分割模型的改进解决原有模型对初始化敏感的问题.整个模型直接定义在水平集函数上,定义直观,数值求解简单.对单模态及多模态大脑图像的实验,验证该模型的有效性.A variational model for integrating registration and segmentation is proposed. A non-parametric registration method based on the abstract matching flow model is adopted as the registration term to go along with the non-parametric segmentation term, handling the problem of inconsistence on definition format and solving plan between parametric registration based on B spline and non-parametric active contour model. An edge-based active contour model is applied to segment the region of interest, and the improved model by adding region statistic information deals with the problem of sensitivity to the initialization. The integrated model is directly defined by the level set function and has the merits of intuitionstic definition and simple numerical solution. The validity of the model is verified via the experiments on single modal and multimodal brain images.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222