检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学机电工程与自动化学院,长沙410073 [2]北京航天飞行控制中心,北京100094
出 处:《系统仿真学报》2010年第A01期70-74,共5页Journal of System Simulation
基 金:湖南省自然科学基金(07JJ3127);国防科技大学优秀博士创新基金(B070301)
摘 要:无人机自主导航是保证无人机成功完成各种任务的关键技术之一。随着机载传感器性能的不断提高,利用多传感器信息融合实现自主精确导航将是一个重要的发展趋势。结合目前多传感器信息融合技术在各种航行器导航应用中所取得的成果,对基于多传感器信息融合的无人机自主精确导航技术进行分析和评述。剖析了其中的关键技术,包括自主导航系统结构、误差分析和精度分配、联合滤波器以及图像传感器信息融合等;并重点对图像传感器信息融合的关键部分,包括图像融合、图像匹配和景象区域适配性分析等进行了分析;最后从技术发展和未来应用两个角度进行进一步研究工作的展望。旨在为实现无人机自主精确导航提供有益参考。Autonomous navigation was one of the key technologies to guarantee UAVs’ successful aviation. As the sustained improvement of navigating sensors, it became an important trend for UAVs to realize autonomous precision navigation based on multi-sensor information fusion. In this paper, technique of multi-sensor information fusion based autonomous precision navigation for UAVs was analyzed. First, the present development of the technique and its key sub-techniques were analyzed holistically, which includes design of navigation system structure, error analysis and precision assignment, design of combined filters, and information fusion of image-related sensors. The methods of image fusion, image matching and area matching-suitability were commented specially which belong to the core of information fusion of image-related sensors. Finally further developments were expected from the view of research and application respectively.
关 键 词:无人机 自主精确导航 多传感器信息融合 图像匹配 景象区域适配性
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.44.178