检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱慧明[1] 黄超[1] 虞克明[2] 刘再华[3] 赵锐[3]
机构地区:[1]湖南大学工商管理学院,湖南长沙410082 [2]布鲁内尔大学数学系 [3]湖南大学统计学院,湖南长沙410079
出 处:《湖南大学学报(自然科学版)》2010年第5期83-87,共5页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(70771038);教育部新世纪优秀人才支持计划项目(NCET050704);教育部人文社会科学规划项目(06JA910001)
摘 要:针对自回归移动平均过程中控制变量的观测值并不具有相互独立性,引入贝叶斯分析方法研究过程质量控制问题.通过模型结构的贝叶斯分析,利用残差序列建立了基于自回归移动平均过程的贝叶斯质量控制模型,解决了观察数据相关条件下的过程质量监控问题.仿真分析结果表明:贝叶斯ARMA质量控制方法能够有效地避免了在受控状态下使用常规控制图造成的漏发或虚发报警现象,解决了自回归移动平均过程情况下的质量控制问题.To explore the quality control under the condition that the sample data in the autoregressive moving-average processes are not independent,time series models were introduced to fit these data.The Bayesian ARMA control charts were constructed with independent residual series data,and used to monitor the quality in autocorrelative processes.The results from simulation show that Bayesian ARMA quality control charts can effectively carry out quality control autoregressive moving-average processes,and avoid alarming incorrectly when the processes are under statistical control and not alarming when processes are out of control.
关 键 词:质量控制 时间序列分析 ARMA模型 贝叶斯方法 仿真
分 类 号:O212.8[理学—概率论与数理统计] C931.1[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.168