检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江水利水电高等专科学校机电工程系,杭州310018 [2]宁波大学生命科学与生物工程学院,宁波315211 [3]浙江大学生物系统工程与食品科学学院,杭州310029
出 处:《农业工程学报》2010年第4期143-146,共4页Transactions of the Chinese Society of Agricultural Engineering
基 金:高等学校优秀青年教师教学科研奖励计划资助项目(02411);浙江省教育厅科研计划项目(20070850)
摘 要:为了实现发动机故障的快速实时诊断,提出了一种基于废气成分分析和支持向量机的发动机故障诊断方法。该方法首先运用NHA500废气分析仪采集发动机典型故障状态下的HC、CO、CO2、O2、NOX等废气参数值,接着对采集到的数据进行规范化处理,提取特征向量作为学习样本,然后用于设计训练基于支持向量机的多元分类器,进行故障类型识别。试验结果表明,采用纠错编码的支持向量机分类方法比神经网络具有更好的抗干扰性和更强的分类能力,在小样本的情况下故障诊断正确率达98.5%,能有效描述废气成分变化和故障状态之间的复杂关系。In order to realize real-time fault diagnosis,a method for engine fault diagnosis based on exhaust density analysis and support vector machines(SVM)was put forward.Under typical fault working conditions of the engine, firstly,the data of exhaust densities of HC,CO,CO2,O2,NOXwere gotten by using NHA-500 exhaust density analysis instrument.Then the data were normalized,and feature vectors were extracted from the data as learning samples and then used in designing and training multielement classifier based on support vector machines for fault pattern recognition. Experimental results showed that error correction coding classification method based on support vector machines was better in classification ability and had stronger anti-jamming capability than neural networks.In the case of small samples,accuracy rate of this fault diagnostic method could reach 98.5%.The result means that the method can effectively describe the complex relationship between exhaust compents changes and fault states.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.51.7