检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《光学技术》2010年第3期432-438,共7页Optical Technique
摘 要:在图像处理领域中,压缩传感重构是稀疏表示下的最重要的病态反问题之一。压缩传感图像重构利用图像可稀疏表示的先验知识,从比奈奎斯特采样率低得多的随机投影观测值中重构原始图像。为了克服传统的压缩传感算法中收敛速度慢和未利用变换系数的邻域统计特性的缺点,提出了基于高斯混合尺度模型的压缩传感图像重构算法,证明了独立的高斯混合尺度分布作为压缩传感重构的稀疏先验知识的可行性,结合全变差调整进一步提高算法的性能。实验结果表明,该算法有效地提高了重构图像的主观视觉效果和峰值信噪比,加快了压缩传感图像重构算法的收敛速度。Compressed sensing image reconstruction is one of the foremost ill-posed inverse problems by sparse representation in the field of image processing.Image compressed sensing using the sparse prior of image can reconstruct the original image from far fewer measurements by random projection than Nyquist samples.To overcome the lower convergence rate and not exploiting the statistic characteristics of transform coefficients in neighborhood,the reconstruction algorithm combining Gaussian scale mixtures model is proposed.The feasibility is proved for independent Gaussian scale mixtures distribution use for the sparse prior of compressed sensing reconstruction.And then algorithmic performance is improved even more by total variation.Experiments show that the proposed algorithm effectively improves the subjective visual quality and peak signal-to-noise ratio,and accelerates the convergence of reconstruction algorithm.
关 键 词:图像处理 压缩传感 高斯混合尺度模型 邻域系数 全变差
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117