多面体平图的4着色方法  被引量:4

4-Colouring Method of the Polyhedron Plane

在线阅读下载全文

作  者:万禧[1] 李晓毅[2] 

机构地区:[1]安徽理工大学土木建筑学院,安徽淮南232001 [2]沈阳师范大学数学与系统科学学院,辽宁沈阳110034

出  处:《沈阳师范大学学报(自然科学版)》2010年第2期137-140,共4页Journal of Shenyang Normal University:Natural Science Edition

基  金:国家自然科学基金资助项目(10471096)

摘  要:讨论了多面体平图的4着色问题,将平图的面着色问题简化为平图面中心的顶点着色问题。提出了多面体4着色的基本思路,当顶点数p值很大并且有许多面交汇时,实现对偶图的顶点4着色问题借助于对偶图G(p,q,f)的两棵对偶树的分解,而对偶图G(p,q,f)两棵对偶树的分解又依靠对偶图G′(f,s,t)的Hamilton路径p的分解。概括了对偶图G(p,q,f)4着色的基本方法,同时在此基础上给出了8面体,12面体,20面体,32面体4着色的具体步骤,并以图形的形式给出了以上多面体4着色的具体方案。The article discusses the problem of 4-coloring for the polyhedral plane,simplifying the problem of surface coloring of the plane to the problem of vertex coloring to the center of the plane surface.The basic idea of 4-coloring for the polyhedral plane is described,when the top-points value p is significanty large and many plane intersect,to achieve the dual plane vertex 4-coloring problem by means of two pairs dual tree decomposition for the dual plane G(p,q,f),which is depend on the decomposition of Hamilton path p for the dual plane G′(f,s,t) of the plane G(p,q,f);This paper summarizes the basic methods of 4-coloring the dual plane G(p,q,f),then on this basis and at the same time,the specific steps of 4-coloring to the octahedral,dodecahedron,icosahedrons,32 polyhedral are introduced,finally the specific program of above kind polyhedrals 4-coloring are presented graphically.

关 键 词:对偶图 对偶树 Hamilton路径 4着色 

分 类 号:O157[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象