检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海南师范大学信息科学技术学院,海口571158 [2]中国科学院成都计算机应用研究所,成都610041
出 处:《计算机工程与应用》2010年第16期160-162,177,共4页Computer Engineering and Applications
基 金:海南省自然科学基金(No.807050);四川省科技计划项目(No.2008GZ0003)~~
摘 要:特征选择是文本分类的关键步骤之一,所选特征子集的优劣直接影响文本分类的结果。首先简单分析了几种经典的特征选择方法,总结了它们的不足,然后提出了特征分辨率的概念,并提出了一个基于差别对象对集的属性约简算法,最后把该属性约简算法同特征分辨率结合起来,提出了一个新的特征选择方法。该方法首先利用特征分辨率进行特征初选以过滤掉一些词条来降低特征空间的稀疏性,然后利用所提属性约简算法消除冗余,从而获得较具代表性的特征子集。实验结果表明此种特征选择方法效果良好。Feature selection is one of the key steps in text categorization.The selected feature subset directly influences results of text categorization.Firstly,several classic feature selection methods are analyzed simply and their deficiencies are summarized.And then,the concept of feature distinguishability is presented.Next,an attribute reduction algorithm based on discernibility object pair set is provided.Finally,combining the attribute reduction algorithm with feature distinguishability,a new feature selection method is proposed.The new method firstly uses feature distinguishability to select feature and filter out some terms to reduce the sparsity of feature spaces,and then employs the attribute reduction algorithm to eliminate redundancy,so that the feature subsets which are more representative are acquired.The experimental results show that the new method is promising.
关 键 词:特征选择 文本分类 特征分辨率 差别对象对集 属性约简
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80