检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙继佳[1] 苏式兵[1] 陆奕宇[1] 刘平[1]
机构地区:[1]上海中医药大学,上海201203
出 处:《数理医药学杂志》2010年第3期261-265,共5页Journal of Mathematical Medicine
基 金:国家科技支撑计划中医药诊疗与评价技术研究项目(No.2006BAI08B02-06);艾滋病和病毒性肝炎等重大传染病防治项目(No.2009ZX10004-601);中医药科学方法研究-中医药科学方法总论研究项目(No.2008IM020900);国家973基础研究项目(No.2006CB504800);上海中医药大学科学技术技术发展基金项目(No.X199)
摘 要:目的:采用粗糙集与支持向量机结合的数据挖掘方法进行中医临床肝硬化的辨证研究。方法:根据所收集的293例中医肝硬化患者临床的相关信息,采用粗糙集方法建立证候决策信息表,并通过计算提取与肝硬化各证型有密切关联的重要症状、体征。然后,利用这些提取的症状组合作为支持向量机的出入进行分类学习,从支持向量机分类结果得到相应的证候。结果:采用不同的输入指标所得到的辨证平均正确率均高于70%,尤其采用粗糙集约简后辨证的准确率为84.4%左右。结论:基于粗糙集与支持向量机的中医辨证具有比较高的可靠性,对于中医临床辨证研究工作具有一定的参考价值。Objective:To research Traditional Chinese Medicine(TCM) syndrome identification based on Rough sets and multi-class support vector machines(SVM).Methods:Using the clinical data from 293 patients with posthepatitic cirrhosis,the information decision-making table was set up by Rough Sets method.Furthermore,it was found the characteristic symptom groups as related to the TCM Syndromes from the table.These groups were used as the inputs of SVM for classification and then the appropriate syndromes were gained according to the outputs of SVM.Results:All of the correctness of SVM classifications was above 70%.Especially,using Rough Sets,the correctness of SVM classification bring up as far as 84.4%.Conclusion:The result shows that the data mining method based on Rough Sets and SVM was reliable and referenced for TCM syndrome identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117