检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工业大学,南京210009
出 处:《煤矿机械》2010年第6期243-245,共3页Coal Mine Machinery
摘 要:针对滚动轴承故障振动信号的非平稳特征,提出了一种基于小波包和经验模态分解(Empirical Mode Decomposition,简称EMD)的滚动轴承故障诊断方法。该方法用小波包对振动信号进行预处理,用Hilbert变换求重构信号的包络,采用EMD方法将包络信号分解为若干个IMF分量,让故障信息得到凸显,然后根据某个分量的频谱,判断滚动轴承的故障类型。实验结果表明,比传统的时频分析方法,该方法能够更有效地提取轴承故障特征,诊断轴承故障。According to the non-stationary characteristics of vibration signals from fault roller bearing, a fault diagnosis approach for roller bearings based on wavelet packet and EMD (Empirical Mode Decomposition)method is proposed. Provide the wavelet packet analysis as vibration signal pretreatment means. Gain the envelope of reconstructing signal by using Hilbert transform, and then using the EMD method to decompose the envelope signal into many of intrinsic mode function (IMF) components, so as to highlights the failure information. The frequency spectrum of some IMF component is used to identify the failure pattern of a rolling bearing. Practical examples show that this method can detect rolling bearing failure more effectively comparing with the traditional analysis method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.238