Elementary characterizations of generalized weighted Morrey-Campanato spaces  被引量:1

Elementary characterizations of generalized weighted Morrey-Campanato spaces

在线阅读下载全文

作  者:YANG Da-chun YANG Si-bei 

机构地区:[1]School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2010年第2期162-176,共15页高校应用数学学报(英文版)(B辑)

基  金:supported by the National Natural Science Foundation of China(10871025)

摘  要:Let α∈(0,∞ ), p, q ∈[1, ∞), s be a nonnegative integer, and ω∈ A1(Rn) (tne class of Muckenhoupt's weights). In this paper, we introduce the generalized weighted Morrey- Campanato space L(α, p, q, s, ω; Rn) and obtain its equivalence on different p∈ [1, β) and 1 integers s ≥[nα] (the integer part of nα), whereβ = (1/q - α)-1 when α 〈 1/qorβ= ∞ when α ≥1/q We then introduce the generalized weighted Lipschitz space A(α, q, w; Rn) and prove that L(a, p, q, s, w; Rn)С ∧(α, q, w; Rn) when α ∈ (0, ∞), s ≥[nα], and p∈ [1,β).Let α∈(0,∞ ), p, q ∈[1, ∞), s be a nonnegative integer, and ω∈ A1(Rn) (tne class of Muckenhoupt's weights). In this paper, we introduce the generalized weighted Morrey- Campanato space L(α, p, q, s, ω; Rn) and obtain its equivalence on different p∈ [1, β) and 1 integers s ≥[nα] (the integer part of nα), whereβ = (1/q - α)-1 when α 〈 1/qorβ= ∞ when α ≥1/q We then introduce the generalized weighted Lipschitz space A(α, q, w; Rn) and prove that L(a, p, q, s, w; Rn)С ∧(α, q, w; Rn) when α ∈ (0, ∞), s ≥[nα], and p∈ [1,β).

关 键 词:Morrey-Campanato space Lipschitz space weight. 

分 类 号:O175.2[理学—数学] O159[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象