基于电弧声信号特征分析MAG焊熔透状态在线监测  被引量:8

On-line monitoring of penetration status based on characteristic analysis of arc sound signal in MAG welding

在线阅读下载全文

作  者:毕淑娟[1,2] 兰虎[3] 刘立君[3] 

机构地区:[1]东北林业大学机电工程学院,哈尔滨150040 [2]哈尔滨学院数学与计算机学院,哈尔滨150086 [3]哈尔滨理工大学,哈尔滨150080

出  处:《焊接学报》2010年第5期17-20,共4页Transactions of The China Welding Institution

基  金:宁波自然基金资助项目(2008A610031);黑龙江省自然基金资助项目(E2007-01);黑龙江省青年骨干教师基金资助项目(1153G009);哈尔滨市科技创新基金资助项目(2007RFQXG055)

摘  要:提出一种基于MAG焊过程可闻电弧声信号采集和处理的熔透状态在线监测方法.通过对平板拼焊射流过渡过程中典型状态下的电弧声信号的实时采集与分析,采用小波去噪和短时加窗等预处理手段,提取了11个可表征焊缝熔透状态的特征参数.通过对构造的高维联合特征向量进行基于特征级的PCA参数融合,重新合成并选取了携带最多熔透状态信息量的8维特征向量,并以此为输入和四种熔透状态为输出,建立了BP和RBF熔透状态辨识网络模型.监测模型的应用例证表明,所建立的两种网络均可实现对熔透状态的在线识别,RBF网络的识别准确率高于BP网络6.25个百分点之多,其熔透状态整体辨识准确率达到91.25%.Based on acquisition and processing of audible arc sound signal in the process of MIC welding,an online test method of penetration status was proposed.Arc sound signal un-der typical penetration status in the flat butt welding process with spray transfer was acquired and analyzed in real time.11 charac-teristic parameters were extracted to characterize welding penetra-tion status by wavelet denoising and short-time windowing tech-nology.PCA parameter was synchronized based on high-dimen-sion characteristic vector,8 dimensions characteristic vector with most information of penetration status was re-synthesized and taken as input parameters,four penetratioa statuses were taken as export parameters,and network models of BP and RBF to i-dentify the penetration status were established.The application of test model shows that the two networks can realize the online recognition of penetration status.The accuracy of RBF network reaches 91.25%,which is 6.25% more than that of BP.

关 键 词:电弧声 MAG焊 熔透状态 模式分类 神经网络 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象