检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包长春[1] 徐为群[1] 李亚丽[1] 潘接林[1] 颜永红[1]
机构地区:[1]中科院声学所中科信利实验室,北京100190
出 处:《微计算机应用》2010年第6期1-7,共7页Microcomputer Applications
基 金:国家科技支撑计划(2008BAI50B03);国家自然科学基金(10925419;90920302;10874203;60875014)
摘 要:鲁棒性是口语理解研究最具挑战性的关键问题之一。本文采用两个策略提高口语解析的鲁棒性:一是使用浅层统计理解框架,将口语解析简化为实体识别,并且以字取代词作为基本处理单元;二是在统计框架下,分别从特征提取和语料扩充两个角度充分利用领域信息。实验结果显示上述方法能有效提升语义解析性能。对于人机对话的测试集,当输入为语音识别结果时,解析性能(F1值)由75.27提升至90.24,输入为人工转抄结果时,性能由80.59提升至97.14。For spoken language understanding, robustness is one of the most challenging key issues. To achieve good robustness, two strategies were investigated. One is to adopt a shallow statistical understanding framework, in which the task of spoken language under- standing is simplified into a (named) entity recognition. In this framework, character is chosen as the basic processing unit instead of word. The other is to efficiently exploit domain information through subword enriched features and enlarged training corpus under the statistical framework. Experimental results show that the proposed strategies improved the understanding performance in F1 from 75. 27 to 90. 24 for using speech recognition output as input and from 80. 59 to 97. 14 for using manual transcripts respectively on a human - computer dialogue test set.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222