检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《陕西理工学院学报(自然科学版)》2010年第2期58-64,共7页Journal of Shananxi University of Technology:Natural Science Edition
基 金:陕西省教育厅自然科学基金项目(07JK209)
摘 要:支持向量机学习器往往是通过求解原二次优化问题的对偶问题获得的。诸多研究表明,支持向量机原始问题同样可以适当地处理约束项,同时,突破以前原二次优化问题不能利用核函数的认识误区,通过引入核函数建立一个无约束优化问题,利用传统优化方法进行求解。理论分析和实验表明,支持向量机原始问题也能实现对数据的高效学习,而且在大规模数据学习问题上,较之求解对应的对偶问题获得的近似解更可靠,参数选择也更好进行。Many algorithms about support vector machine gained the optimal solution through solving corresponding dual programming over the last decade.Recently,many papers about support vector machine in primal space were published,likewise,constraint items were solved efficiently and a unconstrained model was established by introducing the kernel function in primal problem which could be solved by using traditional optimization methods.Based on theoretical analysis and experimental results,it was effective,especially the approximation solution was superior to that to the dual problems when encountering large scale problem.Moreover,the problem of parameter selection could be completed easily.
分 类 号:TP391.6[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28