检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学,南京210094
出 处:《电测与仪表》2010年第5期20-23,共4页Electrical Measurement & Instrumentation
摘 要:为减小滤波和采样装置误差对频率检测三点法精度带来的影响,利用极值分析法对三点法的误差数学机理进行了讨论。根据误差机理发现,合理的选择检测点之间的间隔可以使结果误差最小。牛顿迭代法可被用来离线估计最优检测点间隔。通过误差抑制和少数结果奇异点的剔除,即使电网基波信号存在少许误差,其频率仍可被高精度检测。仿真结果的畸变率曲线证明了本文研究的有效性。In this study, the errors mechanism of three-point algorithm is discussed using extreme value analysis to reduce influence of algorithm precision which caused by errors of filtering and sampling device. The analysis of errors mechanism proved that the errors can reach minimum value when interval of detection points is chosen reasonably. Newton Iteration Method can be used to estimate optimal interval of detection points off-line. After errors reduction and singularity elimination in results, the fundamental frequency can be detected in high precision although fundamental signal has minor errors in the power system. The instance simulation and aberration rate of frequency detection curve show the correctness of this study.
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15