检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波工程学院电子与信息工程学院,浙江宁波315016 [2]山东省科学院自动化所,济南250014
出 处:《工业仪表与自动化装置》2010年第3期116-119,共4页Industrial Instrumentation & Automation
基 金:浙江省自然科学基金资助项目(Y1090285);宁波市自然科学基金资助项目(2009A610100);浙江省教育厅科研项目(Y200803228)
摘 要:基于人工神经网络的智能故障诊断系统作为人工智能技术在模拟电路故障诊断领域的应用,在实践中取得了一定的成效。但将神经网络用于电路故障诊断时,知识具有隐含性,可解释性差,且对输入数据的冗余难以约简,获得每一个训练样本都要进行一次测试或模拟计算,样本花费代价很大,而粗糙集理论作为处理不确定、不完整、不精确知识的有力工具,具有强大的知识约简和定性分析能力。因此,该文提出了对模拟电路的故障特征进行粗集约简预处理研究的智能诊断方法。并举例说明诊断系统的具体实现方法,仿真结果表明:在相同的精度要求下,该算法的训练时间远小于普通的进化神经网络,对模拟电路的故障诊断有一定的实际意义。Based on the artificial neural network intelligent fault diagnosis system took the artificial intelligence technology in the analog circuit fault diagnosis field,has obtained better result in the practice.However,the neural network is used for circuit fault diagnosis,implicit knowledge may be poor explanation,and the redundancy of input data reduction difficult.And rough as the strong tool dealing with uncertain,incomplete,inaccuracy knowledge,has strong knowledge reduction and qualitative analysis.Therefore,this paper has proposed rough set reduction pretreatment to the fault characteristic of analog circuit intelligent diagnosis method.Example circuits are provided to illustrate the proposed method.The simulation result indicated that,under the same precision request,this algorithm training time far is smaller than the ordinary evolution neural network.
分 类 号:TN7[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15