检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽工贸职业技术学院,安徽淮南232007 [2]安徽大学计算智能与信号处理教育部重点实验室,合肥230039
出 处:《计算机工程与应用》2010年第18期116-118,共3页Computer Engineering and Applications
摘 要:针对遗传以及蚁群算法在求解QoS单播路由问题时收敛速度慢和易于陷入局部最优的问题。采用量子蚁群算法求解QoS单播路由,采用量子旋转门实现蚂蚁的移动,用量子非门来实现蚂蚁位置的变异,同时为了确保算法不陷于局部最优,对量子蚁群算法做了改进,并进行了对比实验。实验表明该算法不但克服了遗传以及蚁群算法的易限于局部最优解的缺陷,在收敛速度上也优于相关算法,能较好地解决QoS单播路由问题。For the genetic algorithm and ant colony algorithm solving QoS unicast routing problem is easily trapped into local optimization and has slow convergence.Ant colony algorithm is used to solve the quantum QoS unicast routing,quantum revolving doors are used to complete the ant movement,quantum nongates are used to realize ant location variation,and in order to ensure the algorithm is not trapped in local optimum,quantum ant colony algorithm is improved,and conductes comparative experiments related to the simulation.Experiments show that this algorithm not only overcomes the defects that the genetic algorithm and ant colony algorithm is easily trapped into local optimization and the convergence speed is also better than the ant colony algorithm.The QoS unicast routing problem can be better solved.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222