改进型量子蚁群算法求解QoS单播路由  被引量:1

Improved quantum ant colony algorithm for QoS unicast routing algorithm

在线阅读下载全文

作  者:曹建国[1] 陶亮[2] 

机构地区:[1]安徽工贸职业技术学院,安徽淮南232007 [2]安徽大学计算智能与信号处理教育部重点实验室,合肥230039

出  处:《计算机工程与应用》2010年第18期116-118,共3页Computer Engineering and Applications

摘  要:针对遗传以及蚁群算法在求解QoS单播路由问题时收敛速度慢和易于陷入局部最优的问题。采用量子蚁群算法求解QoS单播路由,采用量子旋转门实现蚂蚁的移动,用量子非门来实现蚂蚁位置的变异,同时为了确保算法不陷于局部最优,对量子蚁群算法做了改进,并进行了对比实验。实验表明该算法不但克服了遗传以及蚁群算法的易限于局部最优解的缺陷,在收敛速度上也优于相关算法,能较好地解决QoS单播路由问题。For the genetic algorithm and ant colony algorithm solving QoS unicast routing problem is easily trapped into local optimization and has slow convergence.Ant colony algorithm is used to solve the quantum QoS unicast routing,quantum revolving doors are used to complete the ant movement,quantum nongates are used to realize ant location variation,and in order to ensure the algorithm is not trapped in local optimum,quantum ant colony algorithm is improved,and conductes comparative experiments related to the simulation.Experiments show that this algorithm not only overcomes the defects that the genetic algorithm and ant colony algorithm is easily trapped into local optimization and the convergence speed is also better than the ant colony algorithm.The QoS unicast routing problem can be better solved.

关 键 词:QOS单播路由 量子蚁群 蚁群算法 路由 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象