检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《水力发电学报》2010年第3期184-190,共7页Journal of Hydroelectric Engineering
基 金:河南省杰出人材创新基金(074200510006);河南省重大科技攻关项目(092101510100)
摘 要:核函数形式对支持向量机(SVM)推广能力有重要影响,目前基于SVM的位移反分析中常用的径向基核函数(RBF)由于不能通过平移形成平方可积空间上的完备正交基,使得相应的支持向量机难以逼近该空间上的复杂多维函数,进而影响参数辨识的精度。小波函数恰具备这种特点,为此引入一种多维允许支持向量核函数——Littlewood-Paley小波函数,该核函数能够以其平移正交性逼近平方可积空间上的任意函数,从而提升支持向量机的推广性能;将Littlewood-Paley小波核函数与最小二乘支持向量机(LS-SVM)相结合形成一种新的岩体力学参数辨识方法,并应用于某抽水蓄能电站洞室围岩参数识别。分析结果表明,与RBF核函数相比,采用小波核函数的LS-SVM具有更高的识别精度,而且利用实测变形数据得到的辨识结果与试验值也较为接近,证明了反演结果的可靠性和所建议方法的有效性。The form of kernel function influences much on the generalization ability of a support vector machine(SVM).By using RBF kernel function in common use for displacement back analysis at present,however,it is impossible through translation to construct a complete orthogonal basis for the square integrable space,so it is difficult to approximate a complicated function in this space and to achieve a good precision of parameter identification.Fortunately,wavelet functions have many excellent features,particularly the multidimensional admissive SVM kernel functions such as Littlewood-Paley wavelets that can approximate through expansion and translation an arbitray square integrable function with high precision and enhance generalization ability of the resulted SVM.This paper proposes a new back analysis method of rock mechanical parameters based on Littlewood-Paley wavelet kernel functions and least squares SVM(LS-SVM).Application of this LS-SVM model to identification of the rock parameters for a pumped storage power station demonstrates a better accuracy than that of RBF kernels.The LS-SVM back analysis using the measured data of rock displacements shows the inversion parameters close to the experimental values,which verifies the reliability and the validity of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.169.240