检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学信息科学与工程学院,宁波315211
出 处:《中国生物医学工程学报》2010年第3期345-352,共8页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金资助项目(60672072);浙江省自然科学基金(Y106505);宁波市自然科学基金(2009A610089);宁波大学王宽诚基金
摘 要:基于互信息的配准方法,其目标函数经常存在许多局部极值,给配准的优化过程带来很大困难。提出一种基于概率模型的引力优化算法,在空间中随机构造参考物体与浮动物体,根据牛顿万有引力定律,搜索空间中质量最大的物体。利用该算法,实现以归一化互信息为相似性测度的医学图像配准实验。实验结果表明,这种方法能够有效地克服互信息的局部极值,在配准精度、配准时间和抗噪性方面都有较好的性能。There are lots of local maximums in image registration based on mutual information,which obstruct optimization in registration process.In this paper,a new optimization algorithm,called probability and gravity optimization,was proposed.We constructed reference objects and floating objects in space,each object was located randomly,then searched the object whose quality was the heaviest according to Newton′ s law of universal gravitation in the whole space.The new method was applied to medical image registration based on normalized mutual information.Experimental results showed that this registration method could efficiently restrain local maxima of mutual information function and had better performance at registration accuracy,registration rate and noise immunity.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170