检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡庆云[1]
机构地区:[1]河海大学数学物理系
出 处:《河海大学学报(自然科学版)》1999年第1期70-73,共4页Journal of Hohai University(Natural Sciences)
摘 要:对破开算子法应用于二维流场计算时由于将算子分裂和分步计算造成的误差进行了分析研究.首先介绍分步误差概念和推求方法,然后,对流场计算中若干典型的破开格式,在不同算例下,计算出对应的分步误差值,再与数值验证相对照,结果吻合.结论是:在地形变化复杂,流场流态改变剧烈时,要慎用破开算子法.对破开算子法在二维流场计算中的应用和改进有明确的指导意义.Analyzed in this paper is operator splitting and step by step calculation induced error in the operator splitting method used for two dimensional flow pattern calculation.The step by step error and its estimating method are introduced first, and then the values of the step by step error corresponding to different calculating examples by using some typical splitting forms are calculated.The main conclusion is that the operator splitting method should be used carefully where the variation of flow patterns is violent.The results presented in the paper have distinct significance for application and modification of the operator splitting method for two dimensional flow pattern calculation.
分 类 号:TV13[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31