机器学习算法在ALOS影像分类中的应用研究  被引量:3

Application Research on the Machine Learning Algorithms in ALOS Image Classification

在线阅读下载全文

作  者:张栋[1] 柯长青[1] 余瞰[1] 

机构地区:[1]南京大学地理与海洋科学学院,南京210093

出  处:《遥感信息》2010年第3期26-29,111,共5页Remote Sensing Information

基  金:国家自然科学基金重点项目(40730635);水利部公益项目(200701024)

摘  要:首先介绍了CART、C5.0和概率神经网络三种机器学习算法的原理,然后以覆盖湖北省公安县的ALOS影像为数据源,从整体精度、对训练样本大小和噪声的敏感性三个方面对它们进行了比较分析。结果显示C5.0算法分类的整体精度最高,达到83.59%。概率神经网络受训练样本大小和噪声的影响最低:在训练样本大小降为原样本数据量的40%时,其精度为78.52%;噪声占训练样本量的10%时,精度只下降了4.3%。通过分析可以看出,在训练样本量充足时,C5.0算法的分类精度最好,而在样本不足或者包含噪声的情况下,使用概率神经网络算法能比其他两种算法取得更好的分类效果。This paper firstly introduces the principles of three machine learning algorithms which are CART,C5.0 and Probabilistic Neural Networks,and then makes a comparative analysis from overall accuracy,size of data set and noise sensitivity,using the ALOS image of Gongan County,Hubei Province as the study data source.The result indicates that the overall accuracy of C5.0 algorithm is the highest,up to 83.59%.The affection from the data set size and the noise on Probabilistic Neural Networks is the lowest:the accuracy is 78.52% when the training set size reduces to 40% of the original size;while the noise accounts for 10% of the original set size,the accuracy only decreases by 4.3%.From the analysis it can be seen that the overall accuracy of C5.0 algorithm is the highest when the training set size is sufficient;however,in case of sample insufficient or containing noise,it can achieve better classification effect than the other two by using Probabilistic Neural Network algorithm.

关 键 词:机器学习算法 ALOS影像 分类 土地覆盖 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象