检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学交通规划与管理江苏省重点实验室,南京210096
出 处:《武汉理工大学学报(交通科学与工程版)》2010年第3期611-615,共5页Journal of Wuhan University of Technology(Transportation Science & Engineering)
基 金:国家973计划项目(批准号:2006CB705500);国家自然科学基金项目(批准号:50738001)资助
摘 要:考虑出行者在个体因素方面的差异及其对选择自行车通勤的作用,利用Odds Ratio统计定性地分析各因素的影响,运用因子分析探索因素间的相关性和内部联系.基于因子分析结果,建立含隐含变量的二项Logit(BL)模型.估计结果表明:出行距离、感知收益、小汽车拥有与是否自行车通勤显著相关.同时利用普通BL模型作为参考得到补充和比较结果:尽管社会经济地位是显著的,家庭收入的影响却不大;出行者更在意快速性和便利性收益,而非安全性和舒适性收益.This paper focuses on the differences among Chinese travelers in individual-based factors and the effects of these differences on whether the travelers would choose bicycle in the commute trips.With a sample of commute survey in Nanjing,the odds ratio statistics are conducted to analyze the effect of each factor qualitatively.Afterwards,the latent variables are obtained by factor analysis method.Based on the results of factor analysis,the latent variables enriched binary logit(BL) model is developed.The results include the findings that travel distance,bicycling-related perceived benefits and "Availability of a car for trips" are significantly associated with bicycle commuting.Meanwhile,BL model without latent variables is developed as reference in order to provide comparative and complementary results: Although socioeconomic status turns out to be an important factor,household income is insignificant;Travelers care more about "rapidity" and "convenience" rather than "safety" and "comfort".Both two models offer some interesting insights into the effects of individual-based factors on bicycle commuting and provide some information for bicycle transportation planning.
关 键 词:个体因素 自行车通勤 隐含变量 二项logit模型
分 类 号:U491.2[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166