具有可加白噪音的耦合系统的同步(英文)  

Synchronization of coupled systems with additive noise

在线阅读下载全文

作  者:沈中伟[1] 周盛凡[1] 路学强[1] 

机构地区:[1]上海师范大学数理学院,上海200234

出  处:《上海师范大学学报(自然科学版)》2010年第3期221-227,共7页Journal of Shanghai Normal University(Natural Sciences)

基  金:supported by the National Natural Science Foundation of China under Grant(10771139);Innovation Program of Shanghai Municipal Education Commission under Grant(08ZZ70);Foundation of Education Commission of China under Grant(200802700002)

摘  要:在单边Lipschitz耗散条件下,考虑具有可加白噪音的耦合系统的两种同步现象,即不同解之间的同步和同一个解的不同分量之间的同步.首先证明了该耦合系统存在单点集随机吸引子,从而发生不同解之间的同步现象,此外该随机吸引子还是系统的唯一平稳解.然后证明了当耦合系数趋于无穷大时,该系统解的每一个分量在有限时间区间内一致地趋于平均系统的平稳解.This paper is devoted to two kinds of synchronization of solutions ( i. e. , between any two solutions and among components of solutions) of the N-coupled Ito stochastic differential equations (SDEs) with additive noises under the one-sided dissipative Lipschitz conditions. We first show that the random dynamical system generated by the coupled SDEs has a singleton sets random attractor which implies the synchronization of any two solutions. Moreover, the singleton sets random attractor is a stationary solution of the coupled SDEs. Then, we show that any components of the solutions of coupled SDEs converge to the stationary solution of the averaged SDE uniformly on any finite time interval as the coupled coefficient tends to infinity. Our results generalize the work on two Ito SDEs in .

关 键 词:同步 随机动力系统 可加白噪音 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象