检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海师范大学学报(自然科学版)》2010年第3期221-227,共7页Journal of Shanghai Normal University(Natural Sciences)
基 金:supported by the National Natural Science Foundation of China under Grant(10771139);Innovation Program of Shanghai Municipal Education Commission under Grant(08ZZ70);Foundation of Education Commission of China under Grant(200802700002)
摘 要:在单边Lipschitz耗散条件下,考虑具有可加白噪音的耦合系统的两种同步现象,即不同解之间的同步和同一个解的不同分量之间的同步.首先证明了该耦合系统存在单点集随机吸引子,从而发生不同解之间的同步现象,此外该随机吸引子还是系统的唯一平稳解.然后证明了当耦合系数趋于无穷大时,该系统解的每一个分量在有限时间区间内一致地趋于平均系统的平稳解.This paper is devoted to two kinds of synchronization of solutions ( i. e. , between any two solutions and among components of solutions) of the N-coupled Ito stochastic differential equations (SDEs) with additive noises under the one-sided dissipative Lipschitz conditions. We first show that the random dynamical system generated by the coupled SDEs has a singleton sets random attractor which implies the synchronization of any two solutions. Moreover, the singleton sets random attractor is a stationary solution of the coupled SDEs. Then, we show that any components of the solutions of coupled SDEs converge to the stationary solution of the averaged SDE uniformly on any finite time interval as the coupled coefficient tends to infinity. Our results generalize the work on two Ito SDEs in .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222