检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵明暤[1,2,3,4] 程昌钧[1,2,3,4] 刘国宁[1,2,3,4] 沈亚鹏
机构地区:[1]机械工业部郑州机械研究所 [2]上海大学力学系 [3]上海市应用数学和力学研究所 [4]西安交通大学工程力学系
出 处:《应用数学和力学》1999年第2期135-143,共9页Applied Mathematics and Mechanics
基 金:国家自然科学基金;机械工业技术发展基金;河南省自然科学基金
摘 要:求解并给出非局部弹性力学平面问题的单位集中不连续位移基本解,基于这些基本解和经典弹性力学中的不连续位移边界积分方程_边界元方法,提出了一种非局部弹性力学平面问题的一般解法·利用该解法,研究分析了Grifith裂纹、边缘裂纹等断裂力学中基本的但又很重要的问题·结果表明,裂纹前沿的应力集中系数与裂纹长度有关,给出了裂纹长度对断裂韧性KⅠc的影响·所得结果与已有实验结果一致·In this paper, the displacement discontinuity fundamental solutions(DDFS) corresponding to the unit concentrated displacement discontinuity for plane problems of nonlocal elasticity are obtained. Based on the displacement discontinuity boundary integral equation (DDBIE) and boundary element method (BEM), a method of analysis of crack problems in non_local elasticity with generalized purpose is proposed. By using this method, several important problems in fracture mechanics such as edge crack are studied. The study of edge crack shows that the stress concentration factor (SCF) near the crack tip is not a constant but varies with the crack length. With this result the effect of crack length on the fracture toughness K Ⅰ c is studied. The results obtained in this paper are in accordance with the published ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.131.56