On the Equi-nuclearity of Roe Algebras of Metric Spaces  

On the Equi-nuclearity of Roe Algebras of Metric Spaces

在线阅读下载全文

作  者:Xiaoman CHEN Benyin FU Qin WANG 

机构地区:[1]School of Mathematical Sciences, Fudan University, Shanghai 200433, China [2]Department of Applied Mathematics, Donghua University, Shanghai 200051, China

出  处:《Chinese Annals of Mathematics,Series B》2010年第4期519-528,共10页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.10731020,10971023);the Shu Guang Project of Shanghai Municipal Education Commission and Shanghai Education DepartmentFoundation(No.07SG38);the Foundation of the Ministry of Education of China

摘  要:The authors define the equi-nuclearity of uniform Roe algebras of a family of metric spaces. For a discrete metric space X with bounded geometry which is covered by a family of subspaces {Xi}i=1^∞, if {C^*(Xi)}i=1^∞ are equi-nuclear and under some proper gluing conditions, it is proved that C*(X) is nuclear. Furthermore, it is claimed that in general, the coarse Roe algebra C^* (X) is not nuclear.

关 键 词:Nuclear C^*-algebra Uniform Roe algebra Equi-nuclear uniform Roe algebra 

分 类 号:O189.11[理学—数学] G633.62[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象