一类具有反三角函数自反馈的混沌神经网络及其应用  被引量:5

A Class of Chaotic Neural Networks with Antitrigonometric Function Self-Feedback and Their Applications

在线阅读下载全文

作  者:徐耀群[1,2] 杨学岭 

机构地区:[1]哈尔滨工程大学理学院,哈尔滨150001 [2]哈尔滨商业大学系统工程研究所,哈尔滨150028

出  处:《哈尔滨商业大学学报(自然科学版)》2010年第3期324-328,333,共6页Journal of Harbin University of Commerce:Natural Sciences Edition

基  金:黑龙江省教育厅科学技术项目(11531074)

摘  要:在线性自反馈的基础上将反三角函数引入到混沌神经网络的自反馈项,提出了非线性自反馈混沌神经网络模型.网络优化机制的分析表明,非线性自反馈使网络以线性函数与反正切函数的和与状态乘积和的方式影响原Hopfield网络的能量函数,避免网络陷入局部极小点.构造了网络的能量函数,分析了网络达到渐进稳定的充分条件并利用其指导网络求解旅行商问题的参数设置.连续函数优化问题和旅行商问题的仿真研究表明,提出的网络能有效地找到优化问题的最优解.A Chaotic neural network model with nonlinear self-feedback is proposed by introducing antitrigonometric function into self-feedback of chaotic neural network in the basic of linear self-feedback.The analyses of the optimization mechanism of the networks suggest that nonlinear self-feedback affects the original Hopfield energy function in the manner of the sum of the multiplications of both linear function and antitrigonometric function to the state,avoiding the network being trapped into the local minima.The energy function is constructed,and the sufficient condition for the networks to reach asymptotical stability is analyzed and is used to instruct the parameter set of the networks for solving traveling salesman problem(TSP).Simulation research on functions' optimization and TSP indicates that the proposed networks can find the optimal solution of combinatorial optimization problems.

关 键 词:非线性自反馈 混沌神经网络 能量函数 渐进稳定 旅行商问题 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象