基于小波分析和SVM的控制图模式识别  被引量:14

Control Chart Pattern Recognition Based on Wavelet Analysis and SVM

在线阅读下载全文

作  者:吴常坤[1] 赵丽萍[1] 

机构地区:[1]西安交通大学,西安710049

出  处:《中国机械工程》2010年第13期1572-1576,共5页China Mechanical Engineering

基  金:国家863高技术研究发展计划资助项目(2008AA04Z121)

摘  要:为提高控制图模式尤其是混合控制图模式的识别精度,提出了基于小波分析和支持向量机(SVM)的控制图模式识别方法。该方法通过对工序质量特征数据进行小波包分解,提取低频逼近序列和各频带能量信息,并以此作为SVM分类器的输入,分别识别控制图模式中的趋势信号、阶跃信号和周期信号,最后通过合并这些信号以确定控制图的模式。通过仿真实验的验证,表明该方法相比传统的控制图模式识别方法,具有较好的识别精度。Control chart pattern recognition based on wavelet analysis and SVM was presented to improve the accuracy of control chart pattern recognition,in particular the accuracy of hybrid control pattern recognition.Process quality characteristics data were decomposed in wavelet packet to extract low-frequency approximation signals and the band energy information,which were taken as the inputs of SVM classifier recognizing trends,step and periodic signals respectively,and these signals figure the final model together.The simulation experiment used for testing recognition effect shows that the method based on wavelet analysis and SVM has an advantage over traditional methods in identification accuracy.

关 键 词:控制图异常模式 小波包分解 支持向量机 模式识别 

分 类 号:TH18[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象