ZnO晶体晶格常数及弹性模量的第一性原理计算  被引量:4

First Principles Calculation of Lattice Constant and Elastic Modulus of ZnO Crystal

在线阅读下载全文

作  者:郭连权[1] 李大业[1] 刘嘉慧[2] 马贺[1] 武鹤楠[1] 冷利[1] 张平[1] 

机构地区:[1]沈阳工业大学理学院,沈阳110870 [2]沈阳工业大学基础教育学院,沈阳110023

出  处:《人工晶体学报》2010年第B06期264-268,共5页Journal of Synthetic Crystals

基  金:辽宁省自然科学基金(No.20062040)

摘  要:本文采用密度泛函理论及第一性原理对ZnO晶体结构参数和弹性模量进行了模拟计算,推导出了六角密集结构晶体弹性模量的解析表达式。计算中采用了Abinit计算软件,得到了ZnO晶体的晶格常数和弹性模量。计算表明,a轴和c轴的晶格常数分别为a=6.03Bohr(1Bohr=0.053nm)和c=9.82Bohr,与实验值比较其相对误差均在1.63%以下。在用局域密度近似和广义梯度近似两种不同的方法计算弹性模量时,用局域密度近似的计算结果为1.402Pa,与实验结果比较相对误差为2.6%。计算得知,它比广义梯度近似的计算结果更为精确。Based on the density functional theory (DFT) and first principles, the simulation calculation of the lattice constant and elastic modulus of the ZnO crystal were carried out in this paper, and the analytical expression of crystal elastic modulus of hexagonal close packing construction is deduced. The calculation uses the abinit package, and works out the lattice constant and elastic modulus of the ZnO crystal. The results of calculation showed that the lattice constants of a axis and c axis are a = 6.03 Bohr( 1 Bohr=0. 053 nm) and c =9.82 Bohr respectively, and the relative errors are both less than 1.63% compared with the experimental data. Being calculated by the two different pseudopotentials of local density approximation (LDA) and generalized gradient approximation (GGA), the elastic modulus result is 1. 402 Pa by LDA, and the relative error is 2.6% compared with the experimental data. It is known from the calculation that the result of LDA is more accurate than the one of GGA

关 键 词:ZNO 密度泛函理论 第一原理 晶格常数 弹性模量 

分 类 号:O73[理学—晶体学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象