基于小波分析和EMD的手写体数字字符特征表示  被引量:1

Character Representation of Handwritten Arabic Numerals Based on Wavelet Analysis and EMD

在线阅读下载全文

作  者:李合龙[1] 王文波[2] 张冠湘[1] 

机构地区:[1]华南理工大学电子商务系,广东广州510006 [2]武汉科技大学信息与计算科学系,湖北武汉430065

出  处:《华南理工大学学报(自然科学版)》2010年第6期78-83,共6页Journal of South China University of Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(10826053;60825306);国家自然科学基金重点项目(U0735004);广东省自然科学基金重点项目(07118074);华南理工大学中央高校基本科研业务费专项资金资助项目(2009ZM0081;2009ZZ0071;2009ZM0198)

摘  要:针对经验模态分解(EMD)能有效地对信号结构作出精确分辨的特点,提出了一种基于小波变换和EMD的手写体数字字符特征表示方法.首先对原始数字字符进行G小波变换极大模预处理,得到能反应字符特征信息的光滑轮廓;然后对规范轮廓曲率序列作EMD分解,以获取浓缩曲率特征的主要信息;最后对此曲率特征数据进行聚类和识别.实验结果表明,与经典的字符特征提取算法相比,文中方法具有更好的聚类效果,提高了分类器的分类设计能力.As the empirical mode decompositon(EMD) can accurately recognize the structure of the original signal,this paper proposes a new feature extraction algorithm of handwritten Arabic numerals based on wavelet transform and EMD.In this algorithm,first,smooth contours of numeral image are obtained by preprocessing the maximum module of the G wavelet transform.Then,an EMD analysis is performed to decompose the normalized curvature sequences into their components,which produces more compact curvature features.Finally,the obtained curvature features are clustered and recognized.Experimental results show that the proposed algorithm is superior to the classic feature extraction algorithm in terms of clustering effect and classifier design ability.

关 键 词:特征提取 小波变换 经验模式分解 曲率 

分 类 号:TP391.43[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象