检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chang Wen LI Xiao Lin ZHU Le ZOU
机构地区:[1]Department of Mathematics, Huaibei Normal University, Anhui 235000, P. R. China [2]Department of Mathematics, Hefei University of Technology, Anhui 230009, P. R. China
出 处:《Journal of Mathematical Research and Exposition》2010年第4期653-663,共11页数学研究与评论(英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant No.60473114);the Natural Science Foundation of Anhui Province (Grant No.070416227)
摘 要:Through adjusting the order of interpolation nodes, we gave a kind of modified Thiele-Werner rational interpolation. This interpolation method not only avoids the infinite value of inverse differences in constructing the Thiele continued fraction interpolation, but also simplifies the interpolating polynomial coefficients with constant coefficients in the Thiele-Werner rational interpolation. Unattainable points and determinantal expression for this interpolation are considered. As an extension, some bivariate analogy is also discussed and numerical examples are given to show the validness of this method.Through adjusting the order of interpolation nodes, we gave a kind of modified Thiele-Werner rational interpolation. This interpolation method not only avoids the infinite value of inverse differences in constructing the Thiele continued fraction interpolation, but also simplifies the interpolating polynomial coefficients with constant coefficients in the Thiele-Werner rational interpolation. Unattainable points and determinantal expression for this interpolation are considered. As an extension, some bivariate analogy is also discussed and numerical examples are given to show the validness of this method.
关 键 词:INTERPOLATION modified Thiele-Werner algorithm unattainable point.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249