检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学控制科学与工程学院,河北保定071003
出 处:《计算机工程与应用》2010年第21期37-39,62,共4页Computer Engineering and Applications
摘 要:当辨识神经网络的类型和结构确定后,初始权值等辨识参数直接影响到辨识效果,而依靠先验知识试凑而得的参数值往往难以达到最佳效果。针对这一问题,提出了一种结合粒子群(PSO)算法及引入动量项的改进BP网络的辨识方法,利用PSO对改进BP网络辨识的初始权值/偏置、学习率、动量系数进行寻优,并将优化后的神经网络模型用在控制系统中进行修正,进一步完善辨识模型。应用在热工系统中,仿真结果表明了该辨识方法的有效性。After type and structure of identification neural network have been determined,identification effect can be directly influenced by identification parameters like neural network weighting initial value.However,it's hard to acquire satisfactory identification performance with parameters determined by method of trial and error according to experience.Aiming at this problem,an identification method combining Particle Swarm Optimization(PSO) algorithm and improved BP Neural Network(NN) introducing momentum coefficient in learning algorithm is put forward.This method uses particle swarm optimization algorithm to optimize the parameters of NN weighting initial value,NN offset initial value,speed of learning and momentum coefficient in using improved BP neural network to identify.Subsequently,the optimized neural network model is modified in control system,which perfects the identification model.The application in thermal process shows the identification method is effective.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31