检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工程数学学报》2010年第4期753-756,共4页Chinese Journal of Engineering Mathematics
摘 要:本文对Banach格上的b-AM-紧算子进行了描述,得到了如下三个结论:1)如果Banach格F是无限维的,则E是KB-空间当且仅当每个从E到F的AM-紧算子是b-AM-紧算子。2)Banach格E是离散的KB-空间当且仅当每个从E到F的连续算子是b-AM-紧算子。3)如果E是离散的,则每个从E到F的b-弱紧算子是b-AM-紧算子。其次给出了b-AM-紧算子的控制性质,得到如下两个结论:1)如果E和F是两个Banach格,算子S,T:E→F满足0≤S≤T且T是b-AM-紧算子,则算子S是b-AM-紧算子当且仅当F具有序连续范数或者E是离散空间。2)如果S,T是从E到F的算子满足0≤S≤T,如果T是b-AM-紧算子,则S2也是b-AM-紧算子。Several characterizations of b-AM-compact operators are considered in this paper, we show that: 1) If F is an infinite-dimensional Banach lattice, then E is a KB-space if and only if every AM-compact operator from E into F is b-AM-compact. 2) The Banach lattice E is a discrete KB-space if and only if every continuous operator from E into Banach lattice F is b-AM-compact. 3) If the topological dual E is discrete, then every b-weakly compact operator from Banach E into Banach space X is b-AM-compact. Moreover, following prop- erties about the problems of domination in the class of positive b-AM-compact operators are established: 1) If E and F are two Banach lattices, then for all operators S, T : E → F such that 0 ≤ S ≤ T and T is b-AM-compact, the operator S is b-AM-compact if and only if the norm of F is order continuous or E is discrete. 2) If S, T are two operators from E into F with 0 ≤ S ≤ T, if T is b-AM-compact, then S2 is likewise b-AM-compact.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117