检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学翼型叶栅空气动力学国防科技重点实验室,陕西西安710072
出 处:《航空计算技术》2010年第4期35-38,52,共5页Aeronautical Computing Technique
摘 要:在二维非结构网格上,对高阶精度间断Galerkin有限元方法求解跨音速欧拉方程进行研究。运用间断有限元理论,采用施密特正交化多项式基函数对流场解进行近似描述,使用HLLC近似黎曼解方法计算网格单元边界处的数值通量,积分项通过高斯积分求解,时间推进采用经典四步Runge-Kutta方法,并引入斜率限制器,抑制数值振荡。对NACA0012翼型跨音速无粘流动进行数值模拟,数值结果表明:间断Galerkin有限元方法具有较高的精度,较小的数值耗散和较强的激波捕捉能力。This paper deals with a high-order accurate discontinuous Galerkin finite element method for the numerical solution of the transonic Euler equations.Based on the theory of discontinuous finite element method,within each element the solutions are expanded in a series of Schmidt orthogonal polynomials base functions.The nonlinear numerical flux is discretized by using the HLLC fluxs and the integration terms are calculated by using Gaussian quadrature rules;Time is advanced by explicit forth-order accurate Runge-Kutta method and slope limiter is constructed to suppress numerical oscillations.Transonic inviscid flow over a NACA0012 airfoil was simulated by this method.The numerical results indicate that the discontinuous Galerkin method has properties of high-order accuracy,smaller numerical dissipation and excellent ability to capture shocks.
分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28