检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油大学信息与控制工程学院,山东东营257061
出 处:《化工自动化及仪表》2010年第7期52-55,共4页Control and Instruments in Chemical Industry
摘 要:为了更有效地揭示高含气率气液两相流流动特征,研究了一种新的时频特征分析方法。首先,对差压波动信号进行小波包变换并由变换系数计算信号能量的时频分布;然后,应用统计方法对时频分布进行特征提取得到一组时频特征量。应用类可分性测量准则分析该组特征量区分不同流型的效果,并与以往小波包特征分析方法相比较,结果表明:该组特征量具有更强的流型特征表征能力。最后,以该组特征量为输入向量,构建了集成多类支持向量机分类器实现了流型识别,其流型正确识别率可达97%。In order to characterize the gas-liquid two-phase flow,the wavelet packet transform was applied to analyze differential pressure signals of the slotted-orifice.Firstly,the time-frequency distribution of signal energy was calculated based on wavelet packet transform coefficients.Then,a new feature vector was extracted from the distribution.Research has showed that this feature vector could descript the character of flow regimes more effectively comparing with the features result in traditional methods.Finally,with the time-frequency features as input,designed a SVM multi-class classifier using the ensemble technology to realize flow regime recognition whose accuracy reach 97%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229