检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学控制学院,山东济南250061 [2]山东省肿瘤医院,山东济南250117
出 处:《山东大学学报(工学版)》2010年第4期36-41,共6页Journal of Shandong University(Engineering Science)
基 金:国家高技术研究发展计划(863计划)资助项目(2006AA02Z4D9)
摘 要:针对医学图像分割中存在的分割类数不易确定的问题,利用常用均值间的不等式关系构造出了一种新的分割类数判据——均值距离函数,并将均值距离函数与模拟退火算法相结合,提出了一种基于均值距离的分割算法。该算法以均值距离函数作为目标函数,采用模拟退火算法进行优化,在整个搜索空间中寻找最优分割阈值,弥补了模糊C均值算法(fuzzy C-means,FCM)分类类数难以确定、搜索过程容易陷入局部极值的缺陷。实验结果表明,算法对含有病灶的医学图像能够进行自动分割,并且分割速度明显高于基于互信息的分割方法。In the research of medical image segmentation,it is difficult to determine the number of segmentation classes.To solve the problem,a novel measurement for determining the number of classes named mean divergence function was formed according to the relation among three common means.And then an image segmentation method based on mean divergence and simulated annealing was proposed.In this method,the mean divergence function is used as an optimization object and simulated annealing is used as an optimization method to find the optimal segmentation threshold in overall search space.This overcomes the shortcomings of fuzzy C-means(FCM) clustering algorithm,such as it is hard to determine the number of classes and easy to get into a local extremum.Experimental results show that this method could automatically segment the medical image with focus,and the speed had significant improvement compared with the method based on mutual information.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.115.20