BP神经网络在道路土壤分离速率模拟中的应用  被引量:1

BP neural network modeling on soil detachment rate of road

在线阅读下载全文

作  者:董建志[1] 曹龙熹[1] 张科利[1] 

机构地区:[1]地表过程与资源生态国家重点实验室,北京师范大学地理学与遥感科学学院,北京100875

出  处:《中国水土保持科学》2010年第4期34-38,共5页Science of Soil and Water Conservation

基  金:西部交通建设科技项目“山区公路弃土场设计与施工技术研究”(200731822313);国家重点实验室ESPRE基金“农田小流域道路侵蚀评价模型研究”(2008-ZZ-03)

摘  要:土壤分离是土壤侵蚀的重要过程,为坡面径流的搬运过程提供了物质基础,因而对土壤分离速率的准确模拟具有重要的理论和实践意义。采用变坡水槽实验,利用在较大的坡度(8.8%~46.6%)及较大的流量范围(1~5L/s)内测得的黄土高原道路土壤分离速率数据,分别使用BP神经网络模型及回归模型对土壤分离速率进行模拟,并对比上述2种模型的模拟效果。结果表明:BP神经网络模型可以利用实验中较容易测定的坡度、流量等数据对土壤分离速率进行较为准确的模拟(模型效率系数0.952);相对传统回归模型,BP神经网络模型对不同类型道路的土壤分离速率的模拟精度均有所提高;BP神经网络模型可以将道路类型、坡度、流量与土壤分离速率的关系统一为一个模型,可为道路土壤分离的模拟提供新的方法。Soil detachment is one of the key processes of soil erosion,and it provides material for transportation.It is important to predict soil detachment rate precisely both for better understanding of soil erosion process and soil erosion modeling.This paper used both BP neural network model and regression models to simulate soil detachment rate of road with the soil detachment rate data obtained from flume experiment in a large scale of slope gradient(8.8%-46.6%) and flow rate(1-5 L/s),and compared the results of two means.The results showed that: BP neural network model can predict soil detachment rate very well with the data which are easily obtained,including slope gradient,flow rate and road type;BP neutral network model improved the accuracy of regression model in predicting soil detachment rate in every type of road.Since BP neutral network model can combine the different road types,different flow rates and different slope gradients into one model,it can improve the efficiency of predicting soil detachment of road and provide a new approach to simulate soil detachment rate of road.

关 键 词:道路土壤分离速率 BP神经网络模型 回归模型 模型效率系数 安塞 

分 类 号:S157.1[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象