检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东科技大学信息科学与工程学院
出 处:《佳木斯大学学报(自然科学版)》2010年第4期612-614,共3页Journal of Jiamusi University:Natural Science Edition
基 金:山东自然科学基金项目(Y2008A01)
摘 要:给出了输入数据含有不确定信息的一个支持向量机分类方法.通过未确知数理论,得到支持向量机分类的一个概率约束模型,然后通过一定方法将概率约束转化为一般约束,由此将给出的概率约束优化模型转化为一个确定性支持向量机分类模型,从而有效解决了含有不确定数据的分类计算问题.In this paper,a support vector machine classification approach with input data uncertainty was proposed. By the uncertain data theory,a probabilistic constraint model was given to support vector machine classification. By transforming the probabilistic constraint into a deterministic constraint,a deterministic support vector machine classification model was suggested. The classification problem with uncertain data was effectively solved.
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201