检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南理工大学计算机科学与技术学院,焦作454000 [2]河南省控制工程重点学科开放实验室,焦作454000
出 处:《高技术通讯》2010年第8期822-827,共6页Chinese High Technology Letters
基 金:教育部科学技术研究重点项目(210128);河南省国际合作项目(084300510065);河南省控制工程重点学科开放实验室开放课题基金(KG2009-14)资助项目
摘 要:针对传统纹理谱描述符维数较高且忽略了空间特征的问题,一方面进一步考虑邻域中心像素与其它像素间的灰度关系,改进了中心对称局部二值模式纹理谱描述符,另一方面基于灰度共生矩阵提出了纹理谱基元共生矩阵的概念,并据此来提取纹理谱基元空间特征。通过不同图像库进行实验,结果表明,结合所提取的空间特征,可明显地提高传统纹理谱描述符的检索性能,而且所提出的描述符以较低的维数取得了较好的检索效果。In order to solve the problems of high dimension and lack of spatial feature of the traditional texture spectrum descriptors, the paper defines the local patterns based on the relativity of central pixels and center-symmetric pixels which are different from local binary pattern (LBP) and center-symmetric local binary pattern (CS-LBP), and then, introduces texture spectrum co-occurrence matrices (TSCMs) based on the gray-level co-occurrence. After that, the statistics calculated from TSCMs are used as the spatial feature. The methods mentioned above were tested on three different databases and the results prove that the retrieval performance of the traditional texture spectrum descriptors can be improved markedly in image retrieval if the spatial feature is considered. The results also show that the new approaches presented in the paper have better performance than the traditional descriptors.
关 键 词:纹理谱 局部二值模式(LBP) 中心对称局部二值模式(CS-LBP) 纹理谱基元共生矩阵(TSCM) 图像检索
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229