检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国电机工程学报》2010年第25期101-107,共7页Proceedings of the CSEE
基 金:国家自然科学基金项目(10771040;50867001);高等学校博士学科点专项科研基金资助项目(20070593002;20060593002)~~
摘 要:基于混合整数二阶锥规划(mixed integer second-order cone programming,MI-SOCP)提出一种求解电力系统计及爬坡约束机组组合问题(unit commitment,UC)的新方法。利用UC问题的混合整数二次规划(mixed integer quadratic programming,MI-QP)模型和一个简单混合整数集合的凸包表示,产生UC问题一个更紧的MI-SOCP模型。将最小覆盖不等式作为割平面,应用内点割平面法求解MI-SOCP以获得不计爬坡约束UC问题的机组启停状态。为满足爬坡约束,提出一种简单易行的机组启停状态修正方法。100机组96时段等多个系统的仿真结果表明,利用内点割平面法求解2种模型时,MI-SOCP能比MI-QP获得质量更好的次优解,所提方法能有效处理爬坡约束,适用于大规模的UC问题。A new algorithm based on mixed integer second-order cone programming (MI-SOCP) was presented to solve ramp rate constrained unit commitment (UC) problem of power system. The proposed method involves reformulating the UC problem into a tighter MI-SOCP model by integrating the traditional mixed integer quadratic programming (MI-QP) model and the convex hull description of a simple mixed integer set. Using the minimal cover inequality as cutting plane, the proposed approach applied interior point cutting plane method for the MI-SOCP in order to obtain the on/off status of units without ramp rate constraints. To meet the ramp rate constraints, a simple correction technique for the on/off status of the units was introduced. The simulation results for systems up to 100 units and 96 hours not only show that the MI-SOCP can get better sub-optimal solutions of the UC problem than the MI-QP when interior point cutting plane method is used, but also show that the proposed method can handle the ramp rate constraints efficiently and is suitable for large scale UC problems.
关 键 词:电力系统 爬坡约束 机组组合 凸包 混合整数二阶锥规划 最小覆盖不等式 内点割平面法
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112