检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京工程学院电力工程学院
出 处:《电气应用》2010年第16期24-27,共4页Electrotechnical Application
基 金:南京工程学院人才引进科研启动基金资助项目(YKJ200905)
摘 要:探讨了采用径向基神经网络对开关磁阻电动机定子径向力进行建模的方法。考虑到定子径向力模型中的两个输入量,即绕组电流和转子位置,取值范围较大,本文提出了先对输入量进行归一化处理,使得基函数的中心映射在[0,1]的闭区间内,再使用最近邻聚类和最速梯度下降法对网络进行训练的方法。文中给出了径向基神经网络和误差反传神经网络在建模精度和收敛速度上的比较,结果证实径向基函数神经网络除了具有很强的非线性逼近精度和泛化能力外,在给定同样的隐层神经元结构、网络学习率和目标误差,径向基神经网络在定子径向力非线性模型的训练过程中收敛速度更快,网络学习效率更高。
关 键 词:开关磁阻电动机 定子径向力 输入向量归一化 径向基函数神经网络 收敛速度
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222