基于QPSO训练的SVM核函数集成学习研究  被引量:5

Study on Ensemble Learning for Kernel Selection Based on Quantum-behaved Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:拓守恒[1] 

机构地区:[1]陕西理工学院计算机系,陕西汉中723001

出  处:《系统仿真技术》2010年第3期202-208,240,共8页System Simulation Technology

基  金:陕西省教育厅科研资助项目(08JK241);陕西理工学院科研基金资助项目(SLG0818)

摘  要:针对训练子集随机性强、规模大、算法时空复杂度高等问题,提出了基于量子微粒群的支持向量机(QPSO-SVM)核函数集成学习算法。该方法首先采用K-Means算法对训练样本进行聚类分析,然后根据其聚类分布选择少量具有代表性的样本,并通过基于量子行为的粒子群算法来训练单个支持向量机(SVM),最后通过贝叶斯投票方法得到集成的SVM分类学习器。实验表明该方法在非线性高复杂度的数据分类中对分类精度有较大提高。Aiming at the existing problems in training subsets, which is strong randomicity,larger scale and high complexity. This paper proposes an ensemble learning approach for support vector machine (SVM) kernel selection based on QPSO (quantum-behaved particle swarm optimization algorithm). Above all, the samples were clustered into several clusters using K-means analysis method. Then the small quantities of representative instances were chosen as training sets and with the samples to train SVM that adopt quantum-behaved particle swarm optimization algorithm to optimize the parameters. Ensemble improvement suppost vector machine classifier was constructed by Bayesian voting. The experimental results indicate that classification precision of this method has higher classification accuracy.

关 键 词:微粒子群 支持向量机 集成学习 量子行为 聚类 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象