基于非线性最小二乘的电容层析成像图像重建算法  被引量:3

A novel image reconstruction algorithm based on Nonlinear Least-Squares for electrical capacitance tomography system

在线阅读下载全文

作  者:陈宇[1,2] 陈德运[1] 王莉莉[1] 于晓洋[1] 

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080 [2]东北林业大学信息与计算机工程学院,哈尔滨150080

出  处:《高技术通讯》2010年第2期163-167,共5页Chinese High Technology Letters

基  金:国家自然科学基金(60572153);高等学校博士学科点专项科研基金(2008-2011);黑龙江省自然科学基金(F200609);教育部春晖计划(2008-2011);中央高校基本科研业务费专项资金(DL09BB16);东北林业大学创新基金(091022559)资助项目

摘  要:针对电容层析成像技术中的'软场'效应和病态问题,提出了基于非线性最小二乘算法的新电容层析成像(ECT)算法。在分析非线性最小二乘问题残量原理的基础上,给出了目标函数中二阶信息项的割线近似的校正公式,并利用Lipschitz空间连续的性质对非线性最小二乘算法的收敛性进行了证明,在此基础上探讨了ECT应用该算法的可行性。该算法满足收敛条件且重建图像误差小。仿真和实验结果表明,与LBP、Landweber和共轭梯度算法相比,对于简单流型该算法兼备成像质量高、边界均匀稳定等优点,该算法的提出为ECT图像重建算法的研究提供了一个新的思路。To solve the‘soft-field' nature and the ill-posed problem in the electrical capacitance tomography (ECT)technology, a novel Nonlinear Least-Squares algorithm for electrical capacitance tomography is presented. Based on the analysis of the residual polynomial mechanism of nonlinear least-squares problems, the correcting formula of the secant approximation algorithm in second-order information items of objective functions is given, and the convergence of the NL2OL algorithm is proved by the continuous properties of Lipschitz space. The feasibility of using this algorithm for ECT problems is also discussed. The algorithm meets the convergence condition and its error of image reconstruction is small. The experimental results and simulation data indicate that the algorithm can provide high quality images and favorable stabilization com- pared with the algorithms of LBP, Landweber and conjugate gradient in the simple flow pattern, and this new algorithm presents a feasible and effective way to research on image reconstruction algorithms for electrical capacitance tomography systems.

关 键 词:电容层析成像(ECT) 图像重建 迭代算法 非线性最小二乘 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象