检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学自动化系,北京100084
出 处:《高技术通讯》2010年第3期279-283,共5页Chinese High Technology Letters
基 金:中国博士后基金(20080440386)资助项目
摘 要:针对辨识技术应用过程中出现的一类输入数据随机缺失时的辨识问题进行了研究。针对输出误差(OE)模型描述的一类系统,提出了一种模型辨识和缺失数据预测交互迭代的辨识算法。在模型辨识中采用了递推的辨识算法便于形成实时更新的在线辨识策略;而在缺失数据的预测过程中,利用小波降噪技术对预测数据进行适应性的滤波。仿真和分析表明,所提出的辨识算法对连续性输入数据缺失具有很强的鲁棒性;与没有小波技术参与的辨识算法相比,该算法具有较高的模型辨识精度和对缺失数据较好的预测能力。A research is carried out to deal with the identification using randomly missing input data, which is probably encountered during the application of an identification technique. Aiming at the true system which can be characterized as an output error (OE) model, an interactively iterative identification algorithm consisting of model identification and prediction for missing data, is proposed. During the model identification, a recursive identification algorithm is applied to achieving a real-time and on-line update. In the course of the prediction for missing data, a wavelet de-noising technique is employed to adaptively filter the predicted missing data. Finally, a numerical simulation shows that the proposed algo- rithm has strong robustness for a segment of missing input data. Compared with the related algorithm without wavelet, the proposed one is capable of giving higher model accuracy and has better prediction ability for missing data.
关 键 词:输入数据缺失 输出误差(OE)模型 小波降噪 迭代辨识
分 类 号:N945.14[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3