散乱点云数据的曲率精简算法  被引量:48

Algorithm for Reduction of Scattered Point Cloud Data Based on Curvature

在线阅读下载全文

作  者:周煜[1] 张万兵 杜发荣[1] 药晓江[1] 

机构地区:[1]北京航空航天大学交通科学与工程学院,北京100191 [2]一汽通用红塔云南汽车制造有限公司,云南曲靖655000

出  处:《北京理工大学学报》2010年第7期785-789,共5页Transactions of Beijing Institute of Technology

基  金:国家"八六三"计划项目(2007AA11Z244);云南省科技合作计划基金资助项目(2003EAAAAOOD043)

摘  要:针对海量散乱点云数据精简问题,提出了以平均曲率为判据的精简算法.采用八叉树结构对点云数据进行空间分割,由分割结果建立k邻域.在散乱数据点参数化的基础上,对k邻域内的散乱点进行二次曲面拟合,求出拟合曲面的平均曲率,进而得出邻域内所有数据点的平均曲率均值,以此为判据进行数据精简.构造曲率差函数,识别出边界数据点,对其进行数据保护.结果表明,该算法对具有曲率多样化特点的点云数据精简具有一定的理论意义和应用价值.通过实验验证了该算法的可靠性和准确性.For reduction of scattered point cloud data,one algorithm based on mean curvature criterion is put forward.The space partition of point cloud is generated using octree structure.k neighborhood is constructed by partition result.All the points in k neighborhood are approximated by quadratic parametric surface based on scattered point cloud parameterization.The mean curvature of fitting surface is calculated.The judgment of requiring reduction is decided by the average of mean curvature.Boundary points are identified and protected by curvature difference function.The results indicate that the proposed algorithm is of significance in theory and practice for reduction of point cloud with curvature diversification.The reliability and accuracy of the algorithm are proved by experimentation.

关 键 词:散乱点云 曲率 数据精简 边界数据保护 

分 类 号:U467[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象