检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030
出 处:《机械工程学报》2010年第17期42-47,共6页Journal of Mechanical Engineering
基 金:国家高技术研究发展计划(863计划;2009AA04Z411);国家自然科学基金(50875272);高等学校博士学科点专项科研基金(20090191110005);重庆大学'211工程'三期建设研究生开放实验室(S-0916)资助项目
摘 要:提出一种基于Shannon小波支持矢量机(Shannon wavelet support vector machine,SWSVM)二级决策的故障诊断模型。先求出原信号的双谱相关值特征矩阵奇异值谱,并用BP神经网络对主分量分析(Principal component analysis,PCA)后的奇异值谱调维得到可分性更高的三维模式矢量,再将该三维模式矢量用SWSVM进行二级故障诊断。SWSVM可以对BP网络因陷入局部极值﹑欠/过学习输出的低分辨率进行校正,获得更高的故障识别精度和自适应识别能力。本模型实现了BP网络和SWSVM优势互补。一滚动轴承故障诊断实例验证了该模型的有效性。A fault diagnosis model based on the second class decision-making through Shannon wavelet support vector machine(SWSVM) is proposed: firstly,singular value spectrum of original signals’ bispectrum correlative character matrix is solved,then singular value spectrum compressed by principal component analysis(PCA) is adjusted to become 3-dimensional pattern vector with better separability by back-propagation neural network,finally,the 3-dimensional pattern vector is input into SWSVM for the second class fault diagnosis. SWSVM can calibrate the low output resolution of BP neural network on account of lapsing into local extremum and insufficient training or over training,and obtain the higher fault recognition accuracy and adaptive recognition capacity. This model realizes advantage complementation between back-propagation neural network and SWSVM. An example of rolling bearing fault diagnosis proves the effectivity of the proposed model.
关 键 词:双谱 BP神经网络 奇异值谱调维 Shannon小波支持矢量机 故障诊断
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28