检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:傅朝阳[1,2] 高济[1] 郭航[1] 周尤明[1]
机构地区:[1]浙江大学计算机科学与技术学院,浙江杭州310027 [2]苏州科技学院电子系,江苏苏州215011
出 处:《南京理工大学学报》2010年第4期475-481,共7页Journal of Nanjing University of Science and Technology
基 金:国家"973"计划资助项目(2003CB317005);国家"863"计划资助项目(2007AA01Z187)
摘 要:为提升服务匹配算法的性能,提出在散列过程中进行语义匹配。设计了基于框架的本体描述模型和支持多属性的服务描述模型。针对不同粒度模型子块的"约束结构"或"定义结构"设计散列函数,在按子块粒度递增的多重散列过程中完成服务匹配;设计了子块间的包容关系语义,并基于该语义进行散列冲突消解。理论分析表明该方法的匹配耗时指标为一区间常数。实验证明,该匹配策略相对于当前主流服务发现方法,提升查全率和查准率的同时,降低了匹配耗时;能快速建立支持高效服务组合的服务依赖关系图。A novel strategy of semantic matchmaking during the process of hashing is proposed to improve the performance of service matchmaking algorithms.A frame-based ontology description model and a multiproperty supported service description model are designed to implement hashing functions corresponding to the constraint structure or definition structure of different granular lexical sub-blocks derived from the service description model.The service matchmaking is accomplished in a process of multilevel hashing with an ascending order of granularity.A collision resolution is constructed on the basis of the subsumption relations between blocks.According to the theoretical analysis,the time for service matchmaking via multilevel hashing can be regarded as a constant varying within a narrow range on the level of millisecond.In contrast to the currently popular service discovery methods,the strategy promotes the precision and recall as well as the time for matchmaking,and can quickly generate the service dependency graph to support an efficient service composition.
关 键 词:服务匹配 多重散列 包容语义 本体 语义匹配 效率
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43