检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liping He
机构地区:[1]Department of Mathematics, Shanghai Jiaotong University, Shanghai 200030, China
出 处:《Journal of Computational Mathematics》2010年第5期676-692,共17页计算数学(英文)
摘 要:In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential equation. The fine solver is based on the finite element method or spectral element method in space and a semi-implicit Runge-Kutta scheme in time. The coarse solver is based on a semi-implicit scheme in time and the reduced basis approximation in space. Of[line-online procedures are developed, and it is proved that the computational complexity of the on-line stage depends only on the dimension of the reduced basis space (typically small). Parareal in time algorithms based on a multi-grids finite element method and a multi-degrees finite element method are also presented. Some numerical results are reported.In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential equation. The fine solver is based on the finite element method or spectral element method in space and a semi-implicit Runge-Kutta scheme in time. The coarse solver is based on a semi-implicit scheme in time and the reduced basis approximation in space. Of[line-online procedures are developed, and it is proved that the computational complexity of the on-line stage depends only on the dimension of the reduced basis space (typically small). Parareal in time algorithms based on a multi-grids finite element method and a multi-degrees finite element method are also presented. Some numerical results are reported.
关 键 词:Finite element and spectral element approximations Multi-meshes and multi-degrees techniques Reduced basis technique Semi-implicit RungeoKutta scheme Offline-online procedure Parareal in time algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229