检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学自动化系,安徽合肥230027
出 处:《中国科学技术大学学报》2010年第8期790-795,共6页JUSTC
摘 要:提出了增强典型相关分析(ECCA)的概念,并将ECCA用于多模态生物特征的特征层融合.ECCA不仅保持了CCA的本质特征,而且利用了类别信息,能够找到两个特征空间对分类更有意义的投影方向.开集测试表明,ECCA用于特征层融合时,可以获得比广义典型相关分析、串行融合、并行融合特征层融合算法和加法规则、乘法规则等分数层融合算法更好的性能.A novel enhanced canonical correlation analysis (ECCA) was proposed and ECCA was used for feature level fusion in multi-biometrics. By using class label information, ECCA can find the most relevant projecting direction which is more useful for classification and along which between-class scatter is maximized. The open test shows that ECCA outperforms other feature fusion methods.
关 键 词:增强典型相关分析 多模态生物特征识别 特征层融合 人脸识别 掌纹识别 开集测试
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.88.23